3.451 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x^2 (d+e x)} \, dx\)

Optimal. Leaf size=240 \[ -\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (a e-c d x)}{x}+\frac {\sqrt {c} \sqrt {d} \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {d}} \]

[Out]

1/2*(3*a*e^2+c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2))*c^(1/2)*d^(1/2)/e^(1/2)-1/2*(a*e^2+3*c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e
^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*a^(1/2)*e^(1/2)/d^(1/2)-(-c*d*x+a*e)*(a*d*e+(a*e^2+c*d^2)*x+c*
d*e*x^2)^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 240, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {849, 812, 843, 621, 206, 724} \[ -\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (a e-c d x)}{x}+\frac {\sqrt {c} \sqrt {d} \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {d}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

-(((a*e - c*d*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x) + (Sqrt[c]*Sqrt[d]*(c*d^2 + 3*a*e^2)*ArcTanh[
(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[
e]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[d])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx &=\int \frac {(a e+c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2} \, dx\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\frac {1}{2} \int \frac {-a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {1}{2} \left (a e \left (3 c d^2+a e^2\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+\frac {1}{2} \left (c d \left (c d^2+3 a e^2\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\left (a e \left (3 c d^2+a e^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\left (c d \left (c d^2+3 a e^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {\sqrt {c} \sqrt {d} \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.20, size = 263, normalized size = 1.10 \[ \frac {\sqrt {(d+e x) (a e+c d x)} \left (\frac {\sqrt {c} d \sqrt {c d} \left (3 a e^2+c d^2\right ) \sinh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d} \sqrt {c d^2-a e^2}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2} \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}}}-\frac {\sqrt {a} \sqrt {e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {d+e x}}+\frac {\sqrt {d} \sqrt {a e+c d x} (c d x-a e)}{x}\right )}{\sqrt {d} \sqrt {a e+c d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[d]*(-(a*e) + c*d*x)*Sqrt[a*e + c*d*x])/x + (Sqrt[c]*d*Sqrt[c*d]*(c*d^2 +
 3*a*e^2)*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(Sqrt[e]*Sqrt[
c*d^2 - a*e^2]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(Sqrt[d]*Sq
rt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/Sqrt[d + e*x]))/(Sqrt[d]*Sqrt[a*e + c*d*x])

________________________________________________________________________________________

fricas [A]  time = 4.37, size = 1221, normalized size = 5.09 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[1/4*((c*d^2 + 3*a*e^2)*sqrt(c*d/e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2
*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) +
 (3*c*d^2 + a*e^2)*sqrt(a*e/d)*x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x
^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x
^2) + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x, -1/4*(2*(c*d^2 + 3*a*e^2)*sqrt(-c*d/e)*x
*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^
2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) - (3*c*d^2 + a*e^2)*sqrt(a*e/d)*x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*
a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*s
qrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/
x, 1/4*(2*(3*c*d^2 + a*e^2)*sqrt(-a*e/d)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (
c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) + (c*d^2 + 3*a*e^2)*sqrt
(c*d/e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c
*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*sqrt(c*d*e*x^2 + a*d*e +
(c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x, -1/2*((c*d^2 + 3*a*e^2)*sqrt(-c*d/e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e
+ (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^
2)*x)) - (3*c*d^2 + a*e^2)*sqrt(-a*e/d)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c
*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) - 2*sqrt(c*d*e*x^2 + a*d*
e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.02, size = 1310, normalized size = 5.46 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)/x^2/(e*x+d),x)

[Out]

-1/4*e*c*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)*x+1/16*d^3*c^2*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(
c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)+1/d*a*e^2*(c*d*e*x^2+a*d*e+(a*e^2+c*
d^2)*x)^(1/2)+1/a/e*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*c+5/4*e*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x*
c-1/2*a^2*e^3/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2
))/x)+7/16*d^3*c^2*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*
d*e)^(1/2)-1/16*e^6/d^3*a^3/c*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d
^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)-3/16*e^2*d*a*c*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)
^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)+1/16*e^6/d^3*a^3/c*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*
e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)+27/16*d*a*e^2*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)
/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*c-3/2*d^2*a*e/(a*d*e)^(1/2)*ln((2*a*d*e+
(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)*c+1/3*e/d^2*((x+d/e)^2*c*d*e+(a*e^
2-c*d^2)*(x+d/e))^(3/2)-1/8*d*c*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)+2/3/d^2*e*(c*d*e*x^2+a*d*e+(a*e^
2+c*d^2)*x)^(3/2)+17/8*d*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*c-1/4*e^3/d^2*a*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2
)*x)^(1/2)*x-3/16/d*a^2*e^4*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(
1/2))/(c*d*e)^(1/2)+1/d*c/a*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*x-1/d^2/a/e/x*(c*d*e*x^2+a*d*e+(a*e^2+c*d^
2)*x)^(5/2)-1/8*e^4/d^3*a^2/c*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)+1/4*e^3/d^2*a*((x+d/e)^2*c*d*e+(a*e^2-c*
d^2)*(x+d/e))^(1/2)*x+1/8*e^4/d^3*a^2/c*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)+3/16*e^4/d*a^2*ln((1/2*a
*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{x^2\,\left (d+e\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{x^{2} \left (d + e x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x**2/(e*x+d),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(x**2*(d + e*x)), x)

________________________________________________________________________________________